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S U M M A R Y  
Starting with the exact solution for the scattering of a plane P wave by a 
homogeneous spherical inclusion, various types of approximate solutions are 
developed and discussed. The standard Rayleigh and Mie approximations are 
extended to the case of inclusions having arbitrary contrasts in material properties. 
For the low-contrast case, solutions are developed which are valid over a wide 
frequency range. Several aspects of these solutions are discussed, including the 
importance of near-field terms and the relative strength of the scattered P and S 
fields. The various types of approximate solutions are compared with each other and 
with the exact solution by calculating and displaying their normalized scattering 
cross-sections. 
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1 INTRODUCTION 

Scattering of seismic waves plays a significant role in seismic wave propagation in the earth. Such phenomena as coda-wave 
excitation, attenuation, precursors, and irregular arrival times are often assumed to be caused by scattering from 
inhomogeneities in the crust and upper mantle of the earth. The scattering mechanism also plays a role in some of the 
algorithms for migration and diffraction tomography which are used in exploration seismology. 

Exact solutions for scattering problems are known for only a few types of obstacles, and even for these cases the 
calculations are not easily implemented because of their complicated mathematical representations. The basic approach to the 
scattering problem which has been developed in such disciplines as optics, acoustics and quantum mechanics makes extensive 
use of asymptotic solutions to explain the main physical features of the scattered fields. In these disciplines, where the critical 
parameters of the scattering obstacle and the observation system are usually well known and controllable, experiments can be 
arranged so that the conditions for the asymptotic solutions are strongly satisfied, and thus these solutions give a satisfactory 
representation of the observational results. However, in the case of scattered seismic waves the situation is more complicated. 
Generally there are a wide variety of shapes, locations, boundaries and material properties in the local heterogeneity of the 
earth’s crust and upper mantle which represent the scattering obstacles for the seismic problem. Additional complications arise 
from the fact that these local heterogeneities are measured with respect to a surrounding material which is itself typically 
inhomogeneous, but on a larger distance scale. In most cases the parameters of the scattering obstacles are either unknown or 
poorly known. Furthermore, parameters of the observation system, such as the locations of the sources and receivers and the 
wavelengths of the incident waves, are typically difficult to control. Therefore, a common situation in seismic problems is that it 
is unknown whether the conditions necessary for the application of asymptotic solutions are actually satisfied. 

Establishing proper conditions for the use of different asymptotic approaches in the treatment of scattered seismic waves is 
not a simple problem because of a number of reasons: 

(1) the broad range in the type and size of scattering obstacles which have to be considered makes it difficult to find an 

(2) The fact that several different parameters are involved, some of which are poorly known, makes it difficult to ascertain 

(3) It is often necessary to apply a combination of asymptotic solutions and some of these may be incompatible. For 

asymptotic approach which is applicable over the entire range. 

whether an asymptotic solution is appropriate or not. 
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example, for the far field ( r + = )  solution in the case of the Rayleigh approximation ( ~ 4 0 )  there is the possibility of a 
contradiction, because the parameter kr = wr/velocity is assumed to be large. 

(4) The absence of a set of canonical problems for which exact solutions are known makes it impossible to check the 
asymptotic solutions by comparing them with the exact solutions. 

In the present paper we consider various asymptotic representations of the scattered fields formed when a plane P wave is 
incident on an elastic spherical inclusion. An exact solution for this problem and methods of calculating it were developed in a 
previous paper (Korneev & Johnson 1993). This exact solution can be used as the starting point for some of the asymptotic 
solutions. It can also be compared with the asymptotic solutions as a means of investigating their validity. 

2 S O L U T I O N S  FOR S M A L L  I N C L U S I O N S  

We begin with a brief review of some of the approximate scattering solutions that are commonly used in seismology. Consider 
an elastic medium with an inclusion at the centre of joint Cartesian {x, y, z }  and spherical {r,  8, $} coordinate systems. The 
parameters within the inclusion, denoted by the index (Y = l), are allowed to be functions of the coordinates 

A1 = A,(x,  y,  z ) ,  P I  = c~i(x, Y ,  z), P I  = pi(xt Y ,  z) .  (1) 

The volume of the inclusion will be denoted by V. The surrounding media, denoted by the index Y = 2 and described by the 
constant parameters 

A, = A = constant, 

(Y = 2). 

p2 = p = constant, p2 = p = constant (2) 

is assumed to be homogeneous. In the equations that follow, material constants without indexes refer to the surrounding media 

Most of the approximate solutions used in seismology involve the Born approximation, which is assumed to be valid in the 
case of weak single scattering (Aki & Chouet 1975; Sat0 1984; Wu & Aki 1985a, 1985b). The actual conditions under which the 
Born approximation is valid are rather complicated and involve both the dimensions of the inclusion and the contrast in its 
material properties (Hudson & Heritage 1981), but it is commonly assumed in seismology that they are equivalent to the 
condition of a small contrast in material properties. By this we mean that the perturbations of the elastic parameters within the 
inclusion are small in comparison with those in the surrounding medium 

Throughout this paper we will be considering an incident plane P wave of the form 

6 - e m [ ( r - ~ ~ ~ p ) ] *  z = U,e'"'. 

The wave is travelling along the z axis in the positive direction. The solution to the scattering problem, which includes both the 
incident and scattered fields, will be written as 

(4) 0 - 

I 

(U, + Up + Ur)ezWt (5) U = Ue(wr = 

where Up and U, represent the scattered P and S waves, respectively. 

series are retained and the solution is 
Our next approximation is to consider the solution at low frequencies. Then only the first members of the frequency power 

and where the following definitions have been used 

The above result has used only the first term in a power series of frequency and is thus dependent upon the assumption that 

- w R  

VP 
k p R = - < < l  (9) 
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where R is the average radius of the inclusion. This is generally known as the Rayleigh-Born approximation. The solution of 
eq. (6) obviously does not depend upon the shape of the inclusion, but only upon its volume. Thus, for the case of Rayleigh 
scattering, all parts of a homogeneous inclusion contribute in proportion to their volume and the scattered field is a simple sum 
of these contributions. 

When the wavelength of the incident wave is comparable to the size of the inclusion and (9) is no longer valid, then a 
different approximation must be used. In Mie scattering the phase differences of the incident wave for different parts of 
inclusion are taken into account (Chernov 1960). The solution is 

This approximation is equivalent to assuming that the inclusion is composed of numerous small non-interacting parts, each of 
which causes a scattered field of the form of eq. (6). 

For the case where the scattering volume is a homogeneous sphere of radius R, the expressions in eq. (10) can be 
integrated to give 

where 

q l = w S I R  and q 2 = w S 2 R  

and j , ( q )  is the spherical Bessel function of order 1. 
The solutions of eqs (6) and (10) have been used in many publications for estimating seismic attenuation, explaining the 

generation of coda waves, obtaining high-frequency asymptotics, and formulating seismic diffraction tomography. In most of 
these applications, however, valid bounds on the relevant parameters are not established, and possible errors due to the use of 
asymptotic solutions are not considered. As a result, large errors in the estimated seismic parameters may occur, or invalid 
solutions may be produced. In a later section we will illustrate these possibilities by comparing the approximate solutions of eqs 
(6) and (10) with the exact solution for a homogeneous elastic sphere. 

3 EXACT SOLUTION FOR THE SPHERE 

A method of calculating the exact scattering solution for a homogeneous elastic sphere was presented in detail in a previous 
paper (Korneev & Johnson 1993), so the results will only be summarized here. The solution for the medium outside of the 
sphere for the case of an incident plane f wave has the form 

u = U" + u, (12) 
where 

u2 = up + u, = c { [ a h +  l ( k p r )  + w,+ l (k s r ) lYL  
1 2 0  

+ [ -u,h,- , (k ,r)  + ( I  + l ) b , h , ~ , ( k , r ) ] Y ~ ~ } e ~ " " ' " ' ~ ' ' '  

Here h k ( x )  are spherical Hankel functions of the second kind. Analytical expressions for the coefficients a, and b, are given in 
Appendix B of Korneev & Johnson (1993), as well as information about the spherical vector system 

YO, = y:!(e, 4) = r x vv,,(a 4) 
yl:, = y Z e ,  4) = (1  + 1)3y,(e,  4) - r vv,,(a 4) 
YL, = m e ,  4) = 1fy,,(e, 4) + r vv,,(e, 4). 

' 

(14) 
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The definitions for the spherical harmonic functions are the usual ones 

Km(8, 4)=eLrn+P;"(cos8), 1 2 0 ,  ( - j ~ r n ~ I ) .  

Any cylindrically symmetric scattered field (as we have for the case of an incident plane P wave) can be represented in the 
form of eq. (13), where the coefficients a, correspond to  the compressional field and the coefficients b, correspond to the shear 
field. 

For the purpose of comparing different solutions, we will use the normalized scattering cross-section uN, which is the ratio 
of the Row of the total energy carried outward by the scattered waves t o  the rate of flow in the incident wave through a normal 
area equal to  the cross-sectional area of the object (geometric shadow of the object). In our case this is 

where t,[U2] is the stress vector of the field U2 on the spherical surface of radius r,, (r, > R ) .  The two parts of the scattering 
cross-section, u$') and ug), represent the P and S fields, respectively. It can be shown that the normalized scattered 
cross-section uN is simply related to  the forward-scattered wave in the far field ( r  + m) 

through the formula 

$m 
I T N  = -4-. 

kpR2 

This is the elastodynamic equivalent of an optical theorem. 

4 LOW-FREQUENCY SOLUTION FOR A N  ELASTIC SPHERE OF ARBITRARY CONTRAST 

Starting with the exact solution described in the previous section, it is possible to  develop approximate solutions which are 
more general than the standard approximations given in Section 2. First consider a low-frequency approximation but with no 
restrictions upon the contrast in material properties. In this case we retain from the solution in eq. (13) only the coefficients 
that are of lowest degree in frequency, which is w 3  and appears only in the first three (1 = 0, 1 ,2)  coefficients 

where 

6 = k,R, q = k,sR 

Then the solution has the form 

up = (Up)$ + (U,),~ 

W",(Zs)(3 C O S ~  8 - 1 )  f 1 
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where the following functions have been introduced. 

1 + i.TS w”,Jz,y) = 1 - ___ , 
2i - iZ5 - 22, 

W;,(z,,) = 1 + 3 2: 2; 

1 + iZ,$ 
w;,(z,y) = __ , 

3i - iZ: - 3 . ~ ~  
w;,(z,) =- z Z? 

These W functions depend upon frequency w and radius r of the observation point through the parameters 

The expression in eq. (19) is a complete low-frequency solution in that it contains both the near-field and far-field parts. 
All of the distance dependence in the solution is contained in the W functions of eq. (20). We obtain the far-field asymptotic 
form of the solution if the functions in eq. (20) satisfy the following conditions 

The functions in eq. (20) are graphed in Fig. 1 for the case of y = Vc/Vp = Z,/Z,, = l / f i .  This figure shows that for k,,r < 1 the 
far-field approximation is definitely not satisfied. As w increases the situation improves and for k,r > 3 eq. (21a) is satisfied to 
within 10 per cent. However, the terms of eq. (21b) converge to their asymptotic values much more slowly and, while three of 
these terms have converged to within 10 per cent of zero for k,,r > 10, the W’& term does not decrease to this level until 
k,,r >20. What this means is that at observation distances r that are only a few times greater than the wavelength, the 
amplitudes of the scattered waves may be consistent with the far-field approximation but their polarizations will be 
considerably more complicated than simple P and S waves. 

The situation is slightly more complicated than indicated in Fig. 1. In that figure the absolute values of the W functions are 
plotted, but in eq. (19) it is clear that these functions can combine either constructively or destructively, depending upon the 
difference in material. properties and the azimuth of the observation point. Furthermore, at small distances and low frequencies 
it can be misleading to consider the individual terms of the solution, as what appears to be a large individual term may be 
cancelled out by another and not show up in the total solution. Thus in Fig. 2 the effect of the near-field terms in the scattered 
field is illustrated by showing the complete solutions in the time domain. Here the P wave scattered from a homogeneous 
spherical inclusion is shown at one azimuth and a distance that is 6 times the radius of the inclusion, which corresponds to 
k,r = 1.2. The near-field terms make a significant contribution at this distance, affecting both the amplitude and the 
polarization of the scattered wave. 

In the near field zone, where Z,, << 1.0, Z, << 1.0, the P and S components of the scattered field (19) interfere with each 
other and must be combined to form 

Note that the density terms involve Zf, which is small compared to the Z,, in the other terms. Therefore, in the near field the 
contrast in the elastic moduli produces the major contribution to the scattering. 

In the true far field where all of the conditions of eq. (21) are satisfied, the scattered field has the form 
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Figure 1. Moduli of the W functions which control the distance dependence of the scattered fields in the low-frequency approximation. 

This result represents Rayleigh scattering from an obstacle having an arbitrary contrast in material properties. In the case 
where the contrast is small and the conditions of eq. (3) are satisfied, then eq. (22) reduces to (6) and we have the combined 
approximations of low frequency, far field and low contrast. Thus the progression of solutions in eqs (13), (19), (22) and (6) 
shows the effects of the Rayleigh and Born approximations. 

The Mie scattering solution for a homogeneous sphere in eq. (11) can be easily generalized to a sphere of arbitrary 
contrast to obtain 

In order to compare the various approximations discussed above, the normalized cross-sections of eq. (15) are plotted as a 
function of kPR in Fig. 3. Such results are shown for two different cases, a low-velocity inclusion on the top and a high-velocity 
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Figure 2. Synthetic seismograms that show the effects of near-field terms in the scattered fields. A plane P wave is incident upon a high-velocity 
sphere for which V,,/V,, = V,, /V,2 = 1.25 and p , / p 2  = 1.10. The dominant angular frequency of the input pulse is o = 0.2Vp/R, where R is the 
radius of the sphere. The seismograms are calculated at a radial distance r = 6R and an azimuth 0 = 45". The units of the time t are R/V,. The 
solid line is the complete solution, whereas the dotted line includes only the far-field parts of the solution. 

inclusion on the bottom. The contrast in the velocities and densities is about 20 per cent. The four solutions shown in this figure 
are the exact of eq. (13), the Born-Rayleigh approximation of eq. (6), the arbitrary contrast Rayleigh of eq. (22), and the 
arbitrary contrast Mie of eq. (23). Note that the near-field terms d o  not contribute to  the scattering cross-sections. In order to 
calculate scattering cross-sections from the solution in eq. (23) it was necessary to convert this solution to the form of eq. (13) 
using the orthogonal properties of the spherical vectors in eq. (14), and then substitute the obtained coefficients a, and b, into 
eq. (15). It should be pointed out that scattering cross-sections for the case of Rayleigh scattering from a spherical inclusion of 
arbitrary contrast were also obtained by Ying & True11 (1956) using potential functions. 

The results shown in Fig. 3 help define the frequency ranges over which the various approximations are valid. First note 
that the Born-Rayleigh approximation is the least accurate of those shown in this figure and that the sign of the error is 
different for low-velocity and high-velocity inclusions. For the case of the low-velocity inclusion, this approximation falls below 
the exact solution at low frequencies, and the error reaches appreciable values in the range around k,,R = 0.4, whereas in the 
case of the high-velocity inclusion the approximate solution falls above the exact solution and the error exceeds 100 per cent for 
k,R > 0.3. In contrast to this, the arbitrary contrast Rayleigh approximation behaves about the same for the low-velocity and 
high-velocity inclusions and remains reasonably accurate for k,R < 0.5. A result which is very clear in this figure is that by far 
the best approximation to the exact solution is provided by the arbitrary contrast Mie solution. This approximation is 
reasonably valid for k,,R < 6 for the low-velocity inclusion and for k,R < 4  for the high-velocity inclusion, which is an order of 
magnitude broader range than for the other approximations. Of course, these ranges of validity will vary somewhat with the 
values of the material properties which are used, but our calculations indicate that the results shown in Fig. 3 display the 
primary features present in the general case. 

5 LOW-CONTRAST APPROXIMATION 

Another type of approximate solution which can be derived from the exact solution of Section 3 is one which assumes a small 
contrast in material properties between the inclusion and surrounding media, but places fewer restrictions upon the applicable 
frequency range than does the Rayleigh approximation. For the case in eq. (3) of small perturbations in the elastic parameters 
of the inclusion, the coefficients a, and b, of eq. (13) (the original expressions can be found in Appendix B of Korneev & 
Johnson 1993) can be reduced to  the following expressions 
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Figure 3. Normalized scattering cross-sections as a function of frequency. The upper two panels are for a low-velocity inclusion with 
Vp,/Vp2 = V,,/V,, = 0.8 and p , / p z  = 0.9, while the lower panels are for a high-velocity inclusion with Vp,/Vp, = V,l/Vs, = 1.3 and p , / p 2  = 1.2. The 
panels on the right are expanded versions of those on the left for small values of the arguments. 

These solutions are not completely general in frequency, because the manipulations of the Bessel functions that were used in 
obtaining them are only strictly valid when we have 

This restriction places an upper limit upon the valid frequency range for eq. (24), with this limit increasing as the contrast in 
material properties becomes smaller and smaller. Below we will show that this restriction is significant for the a, coefficients but 
not for the 6, coefficients. 

Given that the low-contrast solution of eq. (24) is most appropriate for low frequencies that satisfy the restriction of eq. 
(25),  we can proceed differently to obtain solutions that are more appropriate for the higher frequencies. Here we follow the 
method described by Van der Hulst (1957) for the scattering of light from large low-contrast spheres. The basic procedure is to 
substitute Debye asymptotic expansions for the Bessel functions into the exact analytical expressions. Starting with the exact 
analytical expressions for the coefficients of eq. (13), the low-contrast assumption is made and then it is possible to obtain the 



following approximate expression for the coefficients of the scattered P wave. 

a,= - il+ (5, ) j r (5J  - K j L 5  I )it + (-9 
j l+1(51)h1(52)  - Kj&1)h/+1(52) 

where 

K = - - .  PI "PI 

P2 v,> 
Then we write eq. (26) in the form 

tan (a! )  1 
tan(a , )  - i  2 

- - - - ( 1  - - 2 w )  a, = - 
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(26) 

where 

tan (a,)  = - 

and the n,(() are spherical Neuman functions. Because we are looking for solutions valid a t  high frequencies, we introduce the 
Debye asymptotic expansions 

/I+l(51)/&J - Kj1(511/l+1(52) 
il+ 1(51)nd52) - Ki/(51)n,+ 

where 

f = s i n . r - z c o s z ,  and c o s 7 = = .  

These approximations are valid for 1 + 1 < 6. Now eq. (27) can be reduced t o  

It$ 

5 

where 

K - 1  k=- 
K f l '  

If the low-contrast conditions of eq. (3) are strongly satisfied, eq. (28) can be further simplified to  yield 

(29) a, = - i(1 - e-6") 

where 

This is identical to the solution that is obtained in optics. Substituting the a, of eq. (29) into the optical theorem of eq. (16) 
results in a simple formula for the normalized scattering cross-section (Morochnik 1983). 

(31) 

An earlier derivation of eq. (31) can be found in Van der Hulst (1957), where it is shown that this result can be explained by 
interference of the incident and refracted waves propagating in the forward direction. The parameter a is just the phase 
difference between these two waves in the far field. 

Two different formulae have been developed above for the coefficients of the scattered P waves in the low-contrast case. 
At frequencies low enough so that (25) is satisfied, eq. (24a) should be used. At  higher frequencies eq. (28) should be used, and 
when the low-contrast assumption is strongly satisfied this can be replaced by eq. (29). The high-frequency solution is valid so 
long as 5 5 1 + 4. The relationship between these different approximate solutions for the scattered P wave is illustrated in 
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4. Normalized scattering cross-sections as a function of frequency for the scattered P field in the low-contrast case. The upper two 
are for a low-velocity inclusion with Vp,/Vp2 = V,,/V,, = p 1 / p 2  = 0.95, while the lower figures are for a high-velocity inclusion with 
= V,,/V,, = p, /p2  = 1.05. The panels on the right are expanded versions of those on the left for small values of the arguments. 

Fig. 4 for two different cases, a low-velocity inclusion and a high-velocity inclusion. In both cases the contrast in velocities and 
densities is about 5 per cent. This figure shows the scattering cross-section of the exact solution for the scattered P field of eq. 
(13) and for two approximate solutions, the low-frequency P field of eq. (24) and the high-frequency P field of eq. (28). Also 
shown is the scattering cross-section which is calculated using the analytical expression of eq. (31). At low frequencies the 
approximate solution of eq. (24a) agrees best with the exact solution for the scattered P field, with the error growing to about 
30 per cent by the time that the condition of eq. (25) is exceeded ( k P R  = 3). The high-frequency approximate solution in eq. 
(28) as well as eq. (31) both systematically over estimate the exact solution in this range. At higher frequencies the situation is 
reversed. The low-frequency approximate solution of eq. (24a) tracks the exact solution reasonably well up to about kPR = 5 
and then is completely wrong at higher frequencies. The high-frequency approximate solution of eq. (28) and eq. (31) agree 
quite well with the exact solution for kPR 2 5, showing the same oscillatory behaviour at a slightly reduced amplitude for the 
low-velocity inclusion and at a slightly increased amplitude for the high-velocity inclusion. In this range these two approximate 
results are so close to each other that they appear as one line on the graph. This demonstrates that the very simple analytical 
expression of eq. (31) provides an excellent approximation to the scattering cross-section for the high-frequency low-contrast 
case. 
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For the scattered S waves in the low-contrast approximation we return to eq. (24b) for the b, coeficients. In this case the 
condition of eq. (25) does not restrict the use of eq. (24b) because the higher order b, coefficients decrease sufficiently rapidly 
with increasing frequency. At high frequencies the S part of the scattering cross-section, &), oscillates slightly about a constant 
level. Substituting eq. (24b) into eq. (15) for &) and numerically evaluating the infinite sum of the products of Bessel 
functions, we obtain the high-frequency asymptotic estimate 

= 

Thus we see that in the limit of large frequency, the scattering cross section of the S waves reduces to a constant independent of 
frequency. 

An example of the various solutions for the normalized scattering cross-sections for the S field is shown in Fig. 5. It is clear 
that the low-contrast solution calculated from eq. (24b) is a good approximation to the exact solution for both cases of a 
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Figure 5. Similar to  Fig. 4 for the scattered S field. Also shown for comparison is the exact P field from Fig. 4. 
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low-velocity inclusion and a high-velocity inclusion. The agreement is extremely good for k,R < 1, but even at higher 
frequencies the approximate result tracks the main features of the exact result and never differs from it by more than about 25 
per cent. Similar to the scattered P field, this approximate solution underestimates the exact solution in the case of a 
low-velocity inclusion and over estimates it in the case of a high-velocity inclusion. Also shown on this plot is the 
high-frequency asymptotic approximation of eq. (32). While this is obviously not an appropriate approximation at the very low 
frequencies, it provides a simple but fairly accurate result at higher frequencies. It is worth noting that the examples shown in 
Figs 4 and 5 actually represent a severe test for the low-contrast approximations. While the contrasts in velocites and densities 
are only 5 per cent in these examples, the contrasts in elastic constants are about 15 per cent. 

Also shown in Fig. 5 for the purposes of comparison is the exact solution for the normalized scattering cross section of the 
P field. The scattered P field is clearly much larger than the scattered S field for high frequencies, but for kPR < 1 the situation 
can be reversed, with the scattered S field considerably larger than the scattered P field. To a certain degree this type of 
behaviour is a function of the contrasts in material properties of the inclusion, but there is generally a range of frequencies 
where more energy is scattered into the S field than into the P field. This observation could have implications for the 
generation of seismic coda. 

6 CONCLUSIONS 

There are two basic lessons to be learned from this study. First, considerable care must be taken in using various approximate 
solutions for the seismic scattering problem because these solutions are valid only over a limited range of conditions. Second, 
standard approximations that are typically made in seismology and associated with the names of Born, Rayleigh and Mie, can 
be considerably improved by making a few modifications in the formulae or by using some of the alternative formulae 
developed in this study. Because of the need to make comparisons with exact solutions, this study has concentrated on the case 
of P waves scattered from a spherical inclusion. However, the results are more general than this and should be applicable to 
scattering from a more extended class of objects with simple and smooth boundaries. 

The Born-Rayleigh approximation is commonly made in seismology for the case of low-contrast scatterers and 
wavelengths large compared to the dimensions of the scatterer. However, because of the effect of near-field terms in the 
scattering solution, this approximation is only valid at distances which are removed several wavelengths from the site of the 
scattering. Thus care must be taken in using this type of an approximation to explain scattering in the vicinity of seismographic 
stations. 

Both the usual Rayleigh approximation of eq. (6) and the Mie approximation of eq. (10) are limited to low frequencies and 
low contrasts in material properties. The low-contrast limitation can be considerably expanded by using solutions developed as 
a low-frequency approximation for an inclusion of arbitrary contrast. Thus, by substituting eq. (22) for the Rayleigh formula of 
eq. (6) and by substituting eq. (23) for the Mie formula of eq. (ll), the range of validity of these solutions can be extended to 
higher frequencies. In particular, as shown in Fig. 3, the arbitrary contrast Mie solution is valid over a frequency range that is 
an order of magnitude greater than for the other approximate solutions. 

In situations where the contrast in material properties is actually small, approximate solutions have been developed that 
are valid over essentially the entire frequency range. In the case of an incident P wave two different results must be used for 
the scattered P field, one for the low frequencies and one for the high frequencies. However, a single result can be used for the 
scattered S field over the entire frequency range. For situations where the scattering cross-section is needed, an analytical result 
based on the optical theorem provides a simple but good approximation for the higher frequencies. Finally, these results 
illustrate some of the important differences between acoustic and elastic scattering, as there are frequencies where considerably 
more energy is scattered into S waves than into P waves. 
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